If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.2x^2+176x+21900=0
a = -0.2; b = 176; c = +21900;
Δ = b2-4ac
Δ = 1762-4·(-0.2)·21900
Δ = 48496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48496}=\sqrt{16*3031}=\sqrt{16}*\sqrt{3031}=4\sqrt{3031}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(176)-4\sqrt{3031}}{2*-0.2}=\frac{-176-4\sqrt{3031}}{-0.4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(176)+4\sqrt{3031}}{2*-0.2}=\frac{-176+4\sqrt{3031}}{-0.4} $
| x2=8.1x-4.5 | | 10h+10=8h | | 2x+3 15=9 10 | | 5y-4=9 | | -7(2x-2)+5(3x-7)-2=4-5 | | 4x=0.24 | | -2(4x-1+3(3x-5)-4=2-8 | | 2g-2g+g=11 | | 8x-8x+2x=10 | | x^2-7√7x+70=0 | | 10=3/4x+8 | | 2(-13+x)=2(9x-11) | | 7(b+8)=30 | | C=0.001x3+8x+54 | | 50x+150=75x-200 | | 29+30=87x+81-44x | | 3a+3a+6-1=a+5a+7-9 | | 4x+100=6x-10 | | 9y+3y+7+2=9y+y+4+7 | | -2x+48=8x-12 | | 3y-7=8y-23 | | 3/p+1/5(40-p)=0 | | 35100=0.4x | | 3x/4+17=35 | | 4x+10+1x=2.5(2x-4) | | (-2x-1.73)(2x+1.73)=0 | | 1250000=-5p^2+15000p | | 12=73-x | | 5(t-2)=21 | | p^2+8p=16=0 | | -16^2+288t+7=0 | | 13f-32=33 |